

□ Background (Extreme nonlinear optics)

□ High-power THz-wave generation

□ Non-linear THz spectroscopy in solids

□ Perspectives

μο και να ε σ' κατέδε νέειμε κάλτεκται τον τον στό τα το emot κγοτο έμπος με στρεπική ότον νανέκτατα το τα κατ

B Impurity ionization in Ge:Ga

THz-pump and visible-probe system

FO KINDLE GAMPEDE GERLE MATERIALISCIENCES FILCEMSTRYOTO LURCHP $^{-1}$ filler autoroniversits of ths the 23e

Exciton ionization in ZnSe MQWs

FOR UNDERGRATEDE WEITER RECEPTION DESTRICTERS REPORT 0 and 0 and 0 and 1 and

THz induced luminescence

<u>GaAs quantum wells</u>

• Non-doped

• Low temperature measurement (10 -150 K)

• The electric field is perpendicular to the stacking direction and along the (100) direction of the sample

FOR UNTEGRATEDE VEELE WATERTAITSCIENCEST FICEMSTRYOIC ÉURCHPEITERYOICS UNIVERSITS FILMS DE UTE

Electric field dependence

- Luminescence centered around 1.55 eV.
- The number of carriers increases by about three orders of magnitude.

FO KANNIE GAMAEDE GEELE MATERIAATSCHEN GESTPACEMSTRY DAG DUACTICE STATISCHE AVOTO ONIVERSIUS – ANS DUU**29**9

According to optical-pump optical-probe measurement

- Carrier-carrier scattering : 2 \sim 10 fs
- \cdot Optical phonon emission : 100 ~ 400 fs

Near-infrared transient absorption measurement with single cycle THz pulse excitation

THz-induced Transparency

THz induced transparency over 14% at 800 nm

FOR NUE GRANEDE CEELE WATER TAITSCIENCES FICE ENSTRYDIO ÉURCHPERTONNE REOTORNEVERSIUS - UNS DU U**S 1**E

Harace Theorem Theorem 1 Theorem 1 Theorem 1

FOR UNDEGRATEDE CEELE WATERTAILSCIENCES FILCEMSTRYDIO ÉURCIPEITE EN OTO UNIVERSI IS FILSSI EUS

Boltzmann equation

FOR THE GRATEDE GEELE WATER TAITS CLENCES THICE MSTRY ON OF ULA CITETING AND TO UNIVERSITS FILLS STELL **33**8

FOR UNDEGRATED VEEL WATER AUSTRUST TO EMSTRY OTO ULACTICE STATUTE RY OTO UNIVERSITS FUNS DEU**34**8

□ Background (Extreme nonlinear optics)

□ High-power THz-wave generation

□ Non-linear THz spectroscopy in solids

Perspectives

μο και ναθεσάλλαθας νέειμε αγλαθελλατόν τρατό το το emot κγυτο ήμα στρεμή τη ταπό κγυτο το τη τυνεκό τος τη ανό

B Near-field detection

- Probe light need to "read" THz waves before diffraction
- This spatiotemporal gating is obtained by using a thin EO crystal (10 µm-thick LiNbO₃)

iCeMS

Rear-field image of metamaterial

E_{THz} 200 kV/cm Photron 12 bits/ 500 FPS 34 averaged images 800 x 1000 pixels

FOR UNDEGRATEDE CEELE WATERTAITSCIENCES FILCEMSTRYOTO DURCTUP TELERYOTO UNIVERSITS FILMSTELU**37**8

B

- □ Single-cycle carrier-envelope phase locked THz pulse is ready with E > 1 MV/cm
- Intense THz wave with E > 1 MV/cm can induce significant nonlinear optical phenomena in solids.

iCeMS

Thank you for your attention !

kochan@icems.kyoto-u.ac.jp

Acknoledgements

- iCeMS, Kyoto University Dr. H. HIRORI, Dr. F. Blanchard
- Department of Physics, Kyoto University Dr. M. NAGAI, Prof. N. Naka, J. MUKESH, S. Tani, K. Shinokita
- Yokohama National University (STO) Dr. I. KATAYAMA, Prof. J. TAKEDA
- Osaka University (STO) Prof. M. TONOUCHI, Prof. M. ASHIDA
- HIROSHIMA University (GaAs MQW) Prof. Y. KADOYA
- Olympus Co. (microscope)
 - Mr. Atsushi DOI

iCeMS